Spiral Dynamics Optimization-based Algorithm for Human Health Improvement
نویسندگان
چکیده
A study using the spiral dynamics optimization algorithm to evaluate the human health effects of using computer-aided workstations on employees. We collected data for human health risk on employees at their workplaces, analyzed the data and proposed corrective measures applying our methodology. It includes a checklist with nine human health dimensions: work organization, displays, input devices, furniture, work space, environment, software, health hazards and satisfaction. By the checklist, data on human health risk are collected. For the calculation of a human health HS risk index a neural-swarm spiral dynamics search (NSSS) optimization-based algorithm has been employed. Based on the human health risk index, IHS four groups of human health risk severity are determined: low, moderate, high and extreme HS risk. By this index HS problems are allocated and corrective measures can be applied. This approach is illustrated and validated by a case study. An important advantage of the approach is its easy use and HS index methodology speedily pointing out individual employee specific HS risk.
منابع مشابه
Design Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm
This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...
متن کاملPerformance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drives Using Artificial Intelligence
The main theme of this paper is to present novel controller, which is a genetic based fuzzy Logic controller, for interior permanent magnet synchronous motor drives with direct torque control. A radial basis function network has been used for online tuning of the genetic based fuzzy logic controller. Initially different operating conditions are obtained based on motor dynamics incorporating...
متن کاملDynamics of a Running Below-Knee Prosthesis Compared to Those of a Normal Subject
The normal human running has been simulated by two-dimensional biped model with 7 segments. Series of normal running experiments were performed and data of ground reaction forces measured by force plate was analyzed and was fitted to some Fourier series. The model is capable to simulate running for different ages and weights at different running speeds. A proportional derivative control algorit...
متن کاملAirfoil Shape Optimization with Adaptive Mutation Genetic Algorithm
An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...
متن کاملSimulation of Human Foot Mechanism with a Degree of Freedom Motion
The need for simulation of human foot mechanism has made researchers and engineers move towards different patterns to describe this movement. In this regard, optimal solutions such as energy consumption, accuracy, etc. are of utmost importance. In this paper, efforts have been made to present a new solution by designing a fully two-dimensional six-bar mechanism with one degree of freedom so tha...
متن کامل